Dielectron attachment and hydrogen evolution reaction in water clusters.

نویسندگان

  • Robert N Barnett
  • Rina Giniger
  • Ori Cheshnovsky
  • Uzi Landman
چکیده

Binding of excess electrons to nanosize water droplets, with a focus on the hitherto largely unexplored properties of doubly-charged clusters, were investigated experimentally using mass spectrometry and theoretically with large-scale first-principles simulations based on spin-density-functional theory, with all the valence electrons (that is, 8e per water molecule) and excess electrons treated quantum mechanically. Singly-charged clusters (H(2)O)(n)(-1) were detected for n = 6-250, and our calculated vertical detachment energies agree with previously measured values in the entire range 15 ≤ n ≤ 105, giving a consistent interpretation in terms of internal, surface and diffuse states of the excess electron. Doubly-charged clusters were measured in the range of 83 ≤ n ≤ 123, with (H(2)O)(n)(-2) clusters found for 83 ≤ n < 105, and mass-shifted peaks corresponding to (H(2)O)(n-2)(OH(-))(2) detected for n ≥ 105. The simulations revealed surface and internal dielectron, e(-)(2), localization modes and elucidated the mechanism of the reaction (H(2)O)(n)(-2) → (H(2)O)(n-2) (OH(-))(2) + H(2) (for n ≥ 105), which was found to occur via concerted approach of a pair of protons belonging to two water molecules located in the first shell of the dielectron internal hydration cavity, culminating in formation of a hydrogen molecule 2H(+) + e(-)(2) → H(2). Instability of the dielectron internal localization impedes the reaction for smaller (n < 105) doubly-charged clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Pd-Substituted Ni-Al Layered Double Hydroxides for the Hydrogen Evolution Reaction

Clean production of hydrogen from electrochemical water splitting has been known as a green method of fuel production. In this work, electrocatalytic hydrogen evolution reaction (HER) was investigated at new prepared layered double hydroxides (LDH) in acidic solution. NiAl/carbon black (CB) LDH was monitored using x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scannin...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

In situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution

In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...

متن کامل

Dielectrons in water clusters

The energetics, structure, and stability of a dielectron solvated in an internal cavity in water clusters, ( H, 0); *, at 300 K are investigated using coupled quantum-classical moleculardynamics simulations. In these calculations the ground state of the dielectron is calculated concurrently with the atomic configurations using the local-spin-density functional method, and the nuclear degrees of...

متن کامل

Effect of temperature on kinetics of the hydrogen evolution reaction on Ni-P-C cathodes in alkaline solution

The kinetics of hydrogen evolution reaction (HER) was studied in 1M NaOH at various temperatures (298 to 358 K) on Ni-P-C (composite electrodes. The electrochemical efficiency of the electrodes has been evaluated on the basis of electrochemical data obtained from the steady-state polarization Tafel curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1M NaOH solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 115 25  شماره 

صفحات  -

تاریخ انتشار 2011